∑an(x-1)^n在x=0处收敛,在x=2处发散,则该幂级数的收敛半径为(请详细解答,谢谢)

2025-04-29 16:56:27
推荐回答(2个)
回答1:

根据比值法
设Un=an (x-1)^n
Un+1=an+1 (x-1)^(n+1)
lim n→∞ |Un+1/Un|
=lim n→∞ |an+1 (x-1)^(n+1)/an (x-1)^n|
=lim |x-1| |an+1/an|
=R|x-1|<1
收敛区间
|x-1|<1/R
-1/R +1<x<1/R +1
要满足0<x<2,则R≤1
而当x=0时收敛,x=2时发散
收敛域为[0,2)
所以收敛半径为R=1

回答2:

an/an+1=R,你写反了。