(1)两个全等的等腰直角三角形ABC和三角形EDA如图1放置,点B,A,D在同一条直线上.那么点C,A,E在同一

2025-06-22 01:17:18
推荐回答(1个)
回答1:

(1)①画图
②结论是:BF⊥CE,BF=

1
2
CE.

(2)如图,①证明BF=
1
2
CE
∵BF为∠ABC的平分线,∠ABC=90°
∴∠CBF=∠ABF=45°
∵DF⊥BF
∴∠F=90°
∵点B,A,D在同一条直线上,△BFD为直角三角形
∴cos∠FBD=
BF
BD

∴BF=
2
BD
2

又∵Rt△ABC≌Rt△EDA
∴BC=AD,BA=DE
设BC=AD=a,BA=DE=b
∴BD=a+b
∴BF=
2
(a+b)
2

过E作EH∥BD交CB的延长线于H
∵∠CBA=90°,∠ADE=90°
∴∠CBA=∠ADE
∴CH∥DE
∴四边形BHED为矩形
∴BH=DE=b,HE=BD=a+b
∴CH=a+b
∴△HCE等腰直角三角形
由勾股定理,得CE=
2
(a+b)

∴BF=
1
2
CE
②证明BF⊥CE
∵Rt△CHE是等腰直角三角形
∴∠HCE=∠HEC=45°
∵∠FBC=45°
∴∠BGE=∠HCE+∠FBC=90°
∴BF⊥CE
∴BF⊥CE,BF=
1
2
CE
仍然成立.