(2010?宝山区一模)已知△ABC中,AB=3,AC=3,D是边AC上一点,且AD:DC=1:2,连接BD.(1)求证:△ABD

2025-06-22 03:39:28
推荐回答(1个)
回答1:

(1)由AC=3,AD:DC=1:2,
得AD=1,CD=2,
∵∠BAD=∠CAB,

AB
AC
=
3
3
AD
AB
=
1
3
=
3
3

∴△ABD∽△ACB;

(2)如图①所示,过A点作BC的垂线,交CB的延长线于E点,
在△ACE中,
∵sin∠ACB=
AE
AC
=
1
3
,AC=3,
∴AE=1,
由勾股定理,得CE=
AC2?AE2
=2
2

在Rt△ABE中,AB=
3
,由勾股定理,得BE=