(1)∵函数f(x)=2cosxsin(x+
)?π 3
sin2x+sinxcosx=sinxcosx+
3
cos2x-
3
sin2x+sinxcosx
3
=sin2x+
cos2x=2sin(2x+
3
).π 3
∵x∈[?
,π 12
],∴π 6
≤2x+π 6
≤π 3
,∴2π 3
≤sin(2x+1 2
)≤1,π 3
故函数f(x)的最大值为2,最小值为1.
(2)锐角△ABC中,由f(A)=0 可得 sin(2A+
)=0,∴A=π 3
.π 3
∵b+c=4≥2
,当且仅当b=c时取等号,故 bc≤4,即 bc的最大值为 4.
bc
故△ABC面积S=
bc?sinA=
1 2