1<=x+y+1<=4所以1*2<=∫∫(D为积分区域) (x+y+1) d〥<=4*2即2<=∫∫(D为积分区域) (x+y+1) d〥<=813<=(x^2+4y^2+9)<=25所以13*4<=∫∫(D为积分区域) (x^2+4y^2+9)d〥<=25*4即42<=∫∫(D为积分区域) (x^2+4y^2+9)d〥<=100