椭圆E的中心在原点O,焦点在x轴上,离心率 e= 2 3 ,过点C(-1,0)的直线l交椭

2025-06-22 10:53:26
推荐回答(1个)
回答1:

设椭圆方程为:
x 2
a 2
+
y 2
b 2
=1
(a>b>0),
e=
c
a
=
2
3
及a 2 =b 2 +c 2 得a 2 =3b 2
故椭圆方程为x 2 +3y 2 =3b 2
(1)∵直线L:y=k(x+1)交椭圆于A(x 1 ,y 1 ),B(x 2 ,y 2 )两点,
并且
CA
BC
(λ≥2)
∴(x 1 +1,y 1 )=λ(-1-x 2 ,-y 2 ),
x 1 +1=-λ( x 2 +1)
y 1 =-λ y 2

把y=k(x+1)代入椭圆方程,
得:(3k 2 +1)x 2 +6k 2 x+3k 2 -3b 2 =0,且△=k 2 (3b 2 -1)+b 2 >0,
x 1 + x 2 =-
6 k 2
3 k 2 +1
x 1 x 2 =
3 k 2 -3 b 2
3 k 2 +1

S △OAB =
1
2
1+ k 2
| x 1 - x 2 |
|k|
1+ k 2
=
1
2
|k|| x 1 - x 2 |=
|λ+1|
2
|k|| x 2 +1|

联立②、③得: x 2 +1=
2
(1-λ)(3 k 2 +1)

S △OAB =
λ+1
λ-1
?
|k|
3 k 2 +1
(k≠0)

(2) S △OAB =
λ+1
λ-1
?
|k|
3 k 2 +1
=
λ+1
λ-1
?
1
3|k|+
1
|k|
λ+1
λ-1
?
1
2
3
(λ≥2)

当且仅当 3|k|=
1
|k|
k=±
3
3
时,S △OAB 取得最大值.
此时x 1 +x 2 =-1,
又∵x 1 +1=-λ(x 2 +1),
x 1 =
1
λ-1
x 2 =
λ-1
,代入④得: 3 b 2 =
λ 2 +1
(λ-1) 2

故此时椭圆的方程为 x 2 +3 y 2 =
λ 2 +1
(λ-1) 2
(λ≥2)

(3)由②.③联立得: x 1 =
-2λ
(1-λ)(3 k 2 +1)
-1
x 2 =
2
(1-λ)(3 k 2 +1)
-1
,将x 1 .x 2 代入④得: 3 b 2 =
(λ-1) 2 (3 k 2 +1)
+1

由k 2 =λ-1
得: 3 b 2 =
(λ-1) 2 (3λ-2)
+1=
4
3
[
1
(λ-1) 2
+
2
(λ-1) 2 (3λ-2)
]+1

易知:当λ≥2时,3b 2 是λ的减函数,
故当λ=2时,(3b 2 max =3.
故当λ=2,
k=±1时,椭圆短半轴长取得