在ta右边的概率是a,因为对称,所以在-ta左边的概率也是a,因为总的概率是1,所以在-ta右边的概率是1-a,所以ta即t(1-a)。
数学上,对称性由群论来表述。对称群为连续群和分立群的情形分别被称为连续对称性(continuous symmetry)和分立对称性(discrete symmetry)。德国数学家威尔(Hermann Weyl)是把这套数学方法运用於物理学中并意识到规范对称重要性的第一人。
镜面对称:
镜面是平分分子的平面,在分子中除位于经面上的原子外,其他成对地排在镜面两侧,它们通过反映操作可以复原。反映操作是每一点都关于镜面对称,记为σ;n为偶数时σn=E,n为奇数时σn=σ。和主轴垂直的镜面以σh表示;通过主轴的镜面以σv表示;通过主轴,平分副轴夹角的镜面以σd 表示。
反轴:
反轴In的基本操作为绕轴转360°/n,接着按轴上的中心点进行反演,它是C1n和i相继进行的联合操作:I1n=iC1n; 绕In轴转360°/n,接着按中心反演。