设f(x)=1⼀(1-2^(x⼀(x-1)),求lim(x→0)f(x),lim(x→1)f(x)

2025-06-22 01:59:20
推荐回答(1个)
回答1:

,1.x→0时,x/(x-1)趋于0,
lim(x→0)f(x)=lim(x→0)1/(1-2^(x/(x-1))=∞
2.x→1+时,x/(x-1)趋于+∞,
lim(x→1+)f(x)=lim(x→1+)1/(1-2^(x/(x-1))=0
x→1-时,x/(x-1)趋于-∞,2^(x/(x-1))趋于0
lim(x→1-)f(x)=lim(x→1-)1/(1-2^(x/(x-1))=1
所以:lim(x→1)f(x)不存在