(1)点O到△ABC的三个顶点A、B、C的距离的关系是OA=OB=OC;
(2)△OMN的形状是等腰直角三角形,
证明:∵△ABC中,AB=AC,∠BAC=90°,O为BC中点,
∴OA=OB=OC,AO平分∠BAC,AO⊥BC,
∴∠AOB=90°,∠B=∠C=45°,∠BAO=∠CAO=45°,
∴∠CAO=∠B,
在△BOM和△AON中
∵
,
AN=BM ∠CAO=∠B OA=OB
∴△BOM≌△AON(SAS),
∴OM=ON,∠AON=∠BOM,
∵∠AOB=∠BOM+∠AOM=90°,
∴∠AON+∠AOM=90°,即∠MON=90°,
∴△OMN是等腰直角三角形.