解1+1/n×(n+2)=(n(n+2)+1)/n(n+2)=(n+1)^2/n(n+2)
故原式=(2^2/1×3)×(3^2/2×4)×(4^2/3×5).........×2018^2/(2017×2019)
=(2*3*4****2018)(2*3*4****2018)/(1×2×....2017)(3×4.......2019)
=2018*2/2019
=4036/2019
1+1/n×(n+2)=(n(n+2)+1)/n(n+2)=(n+1)^2/n(n+2)
故原式=(2^2/1×3)×(3^2/2×4)×(4^2/3×5).........×2018^2/(2017×2019)
=(2*3*4****2018)(2*3*4****2018)/(1×2×....2017)(3×4.......2019)
=2018*2/2019
=4036/2019