由4b=5csinB及正弦定理,得4sinB=5sinCsinB,又sinB= 1?cos2B = 5 3 ≠0,∴sinC= 4 5 ,而90°<B<180°,则0°<C<90°,∴cosC= 3 5 ,(6分)∴cosA=cos[π-(B+C)]=-cos(B+C)=sinBsinC-cosBcosC= 5 3 × 4 5 + 2 3 × 3 5 = 6+4 5 15 .(10分)